A Novel Conducting Polyacetylene Derivative

By LOWELL R. ANDERSON,* GUIDO P. PEZ, and SHAW L. HSU (Corporate Research Center, Allied Chemical Corporation, Morristown, New Jersey 07960)

Summary Doping of predominantly *cis* polyacetylene with FSO_2OOSO_2F in SO_2F_2 solutions at low temperatures yields materials that possess apparently metallic electrical conductivities with, for example, $\sigma_{RT} = 700 \ \Omega^{-1} \ cm^{-1}$, increasing to a maximum of $800 \ \Omega^{-1} \ cm^{-1}$ at 150 K before declining to $640 \ \Omega^{-1} \ cm^{-1}$ at 4.2 K.

SHIRAKAWA et al.,¹ have found that the electrical conductivity of polyacetylene (PA) can be increased over seven orders of magnitude by doping with iodine. This remarkable effect is also seen with oxidizing, Lewis acid dopants (e.g. AsF₅),² and with sodium.³ The PA-I₂ conductor may be viewed as a partially oxidized PA chain with I₃⁻ and possibly I₅⁻ counter anions.³⁻⁵ We sought to achieve high conductivities by increased charge transfer from PA using the powerful oxidizing dopant, bis(fluorosulphuryl) peroxide, FSO₂OOSO₂F. This compound has been used for the oxidation of chalcogens to polyatomic cations, e.g. Se₄²⁺(SO₃F⁻)₂⁶ and recently for the preparation of conducting BN and graphite salts.⁷

Films of ca. 85% cis (15% trans) polyacetylene were prepared by polymerization of C_2H_2 catalysed by $(C_5H_5)_3$ - $(C_5H_4)Ti_2$,⁸ as previously described.⁴ Platinum wire electrodes were wrapped on to the films with contacts assisted by use of Electrodag +502.[†] The assembly was enclosed in an evacuable glass cell; conductivities were measured by standard DC four point probe techniques. The FSO₂-OOSO₂F was obtained by electrolysis of HSO₃F-KF⁹ and other sources. Addition of a small aliquot (ca. 2 mmol) of FSO₂OOSO₂F vapour to PA caused a rapid increase in conductivity ($\sigma_{\rm RT}$) from $<10^{-7}$ to ca. $10^{-1} \Omega^{-1}$ cm⁻¹. Incremental additions over several hours gave a material (I) with $\sigma_{\rm RT} = 240 \Omega^{-1}$ cm⁻¹; however, this conductivity dropped to ca. $140 \Omega^{-1}$ cm⁻¹ upon further treatment with the dopant. Resultant films were brittle, tarnished, and swollen in thickness by ca. 30%. I.r. spectra of (I) displayed an intense carbonyl absorption at 1730 cm^{-1} . To minimize degradation we then conducted the doping at low temperatures in an inert solvent.

A PA film ($\rho = 0.91 \text{ g cm}^{-3}$), mounted as before, was covered with liquid $\mathrm{SO}_2\mathrm{F}_2$ at $-111\ ^\circ\mathrm{C}$ (with no change in conductivity). Aliquots of FSO2OOSO2F vapour were added to the SO_2F_2 at temperatures from -111 to -56 °C over 2-5 days, until no further increase in conductivity occurred. The solution was decanted and the film washed with SO_2F_2 at -80 °C. Evacuation and drying at room temp. gave a greyish film (II) with $\sigma_{RT} = 470 \ \Omega^{-1} \ \mathrm{cm}^{-1}$. Doping another sample of polymer ($\rho = 0.94 \text{ g cm}^{-3}$) with FSO_2OOSO_2F at -111 to -56 °C over 10 days gave a film (III) having a golden lustrous appearance with $\sigma_{\rm BT} = 700 \,\Omega^{-1} \,{\rm cm}^{-1}$. Conductivities of (II) and (III) were found to increase upon lowering the temperature, with maxima in $\sigma_{\rm T}$ occurring at 190 K and 150 K, respectively (Figure). This 'metal-like' behaviour (at least down to 150 K) of PA-FSO₂OOSO₂F prepared at low temperatures contrasts with that previously reported for PA-AsF₅ which shows a monotonic decrease in conductivity with temperature.² Remarkably, the conductivity of (III) at 4.2 K is ca. 90% of that at 300 K.

Materials (II) and (III) were examined by vibrational spectroscopy (inert atmosphere as samples are moisture sensitive). Raman spectra display line broadening but no change in the *cis/trans* ratio with doping. The i.r. bands observed at 1240 and 1460 cm⁻¹ are assigned to the symmetric and anti-symmetric S=O vibrations, respectively, of an R¹R²SO₂ molecule. Band positions and contours are similar to those observed for FSO₂OOSO₂F vapour¹⁰ and the FSO₂O· radical.¹¹ They are notably different from v₈₀ frequencies of 1080 and 1228 cm⁻¹ for ionic fluorosulphates.^{12,14} It thus seems that the doped polymer

[†] Acheson Colloid Co., Port Huron, Michigan.

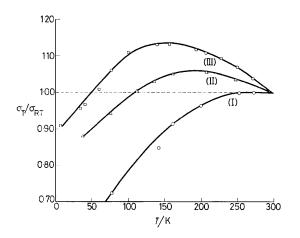


FIGURE. Conductivity ratio-temperature dependence of PA-FIG_2OSO₂F. (I) PA + FSO₂OOSO₂F vapour, tarnished film; (II) PA + FSO₂OOSO₂F in SO₂F₂, 2·5 days, dull grey film, ca. 45% w/w dopant; (III) PA + FSO₂OOSO₂F in SO₂F₂, 10 days, shiny gold film ca. 21% w/w dopant.

cannot simply be described as a partially oxidized, cationic polyene having discrete SO3F- counter ions. The S=O stretching frequencies in R¹R²SO₂ molecules may be related

to the electronegativity of the R¹ and R² groups.¹² A plot of $v_{sym}(SO)$ vs. $v_{antisym}(SO)$ frequencies ^{13,14} for SO_2Cl_2 ,¹³ MeSO₂F,¹³ MeSO₃F,¹⁴ PA-FSO₂OOSO₂F, ClOSO₂F,¹⁵ FSO₂OOSO₂F,¹⁰ and FOSO₂F¹⁴ is approximately linear. The position of PA-FSO₂OOSO₂F in this plot suggests that the fluorosulphate may be bonded covalently on to the polymer chain. Spectroscopic characterization studies of PA-FSO₂OOSO₂F are in progress.

It is remarkable that as powerful an oxidizing agent as FSO,00SO,F can be used to oxidize polyacetylene nondegradatively and yield highly conducting materials. The very small temperature coefficient of these doped polyacetylenes suggests that their inherent conductivity is metallic,³ and that the small activation energy for conduction observed arises from interfibril contact resistance. It may be expected that doping of partially chain-aligned polyacetylenes will give higher conductivities.

We thank Drs. F. Aubke (U. of B.C.) and D. Babb (U. of Idaho) for samples of FSO₂OOSO₂F; also Drs. S. Hasegawa and R. Baughman and Messrs. S. Levinson, J. Corsi, and B. Forman for helpful discussions and technical assistance.

(Received, 1st August 1978, Com. 844.)

 $\ddagger v_{sym} = 1235 \text{ cm}^{-1}, v_{antisym} = 1465 \text{ cm}^{-1}.$

¹ H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, *J.C.S. Chem. Comm.*, 1977, 578. ² C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, *Phys. Rev. Letters*, 1977, **39**, 1098. Also T. C. Clarke, R. H. Geiss, J. F. Kwak, and G. B. Street, *J.C.S. Chem. Comm.*, 1978, 489. ³ C. K. Chiang, M. A. Druy, S. C. Gau, A. J. Heeger, E. J. Louis, A. G. MacDiarmid, Y. W. Park, and H. Shirakawa, *J. Amer.*

- Chem. Soc., 1978, 100, 1013.
 - ⁴S. L. Hsu, A. J. Signorelli, G. P. Pez, and R. H. Baughman, J. Chem. Phys., 1978, 69, 106.
 - ⁵ R. H. Baughman, S. L. Hsu, G. P. Pez, and A. J. Signorelli, J. Chem. Phys., 1978, 68, 5405.
- ⁶ R. J. Gillespie and J. Passmore, Accounts Chem. Res., 1971, 4, 414.
 ⁶ R. J. Gillespie and J. Passmore, Accounts Chem. Res., 1971, 4, 414.
 ⁷ N. Bartlett, R. N. Biagioni, B. W. McQuillan, A. S. Robertson, and A. C. Thompson, J.C.S. Chem. Comm., 1978, 200.
 ⁸ G. P. Pez, J. Amer. Chem. Soc., 1976, 98, 8072.
 ⁹ F. B. Dudley, J. Chem. Soc., 1963, 3407.
 ¹⁰ A. M. Oursebi, J. E. Lauchuk, and E. Aubles. Canad. J. Chem. 1071, 40, 2544.

- A. M. Qureshi, L. E. Levchuk, and F. Aubke, Canad. J. Chem., 1971, 49, 2544.
 R. A. DeMarco and J. M. Shreeve, 'Fluorinated Peroxides,' in 'Advances in Inorganic Chemistry and Radiochemistry,' ed. H. J. ¹² R. N. Haszeldine and J. M. Sintever, Futurinated Feroduces, in Futurinated Feroduces in Futurinated Feroduces in Futurinated Feroduces, in Future, in